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Connectivity-dependent properties of diluted sytems in a transfer-matrix description
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We introduce an approach to connectivity-dependent properties of diluted systems, which is based on the
transfer-matrix formulation of the percolation problem. It simultaneously incorporates the connective proper-
ties reflected in nonzero matrix elements and allows one to use standard random-matrix multiplication tech-
niques. Thus it is possible to investigate physical processes on the percolation structure with the high efficiency
and precision characteristic of transfer-matrix methods, while avoiding disconnections. The method is illus-
trated for two-dimensional site percolation by calculating the finite-size longitudinal dc conductivity for~i! the
critical correlation length along the strip,~ii ! at the percolation threshold, and~iii ! very near the pure-system
limit. @S1063-651X~98!51406-7#
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The transfer-matrix~TM! approach to percolation wa
pioneered by Derrida and co-workers@1#. By analyzing the
possible combinations of adjacent column states made u
occupied and unoccupied sites~or bonds!, and the allowed
connections among the latter and to the arbitrary origin o
two-dimensional (d52) strip, it was possible to write the
TM on the basis of such column states. The key elemen
this formulation was the fact that, from the very structure
the TM, repeated multiplication is tantamount to the sim
taneous generation of all possible connected configurat
that span the strip, each with its proper probabilistic weig
Thus the probability of connection to the origin, whose e
ponential decay is governed by the correlation length
asymptotically given exactly by the largest eigenvalue of
TM. The correlation length could then be used in a pheno
enological renormalization calculation@2#, which gave very
accurate results for critical parameters such as the perc
tion threshold and correlation-length exponentn. It was not
clear, however, how one could take advantage of such a
rect and elegant scheme to investigate properties other
the decay of the probability of connection to the origin. T
obvious alternative, of building up successive columns
occupying~or not! each individual site independently, run
into the problem of disconnections, which is severely agg
vated on a strip geometry. Until now, the usual solution h
been to generate configurations site by site, and study q
tities that do not depend on keeping connectivity along
strip, e.g., the moments of the distribution of clusters@3# for
percolation ind52 and 3. A clever way to get around th
effects of disconnections for random resistor-insulator n
works at percolation was introduced@4# by generating indi-
vidual elements on long strips~or bars, ind53) with free
edges. By imposing a fixed voltage dropacrossthe strip, it
was possible to invoke TM concepts with a step-by-s
evaluation of the transverse conductivity, for which longit
dinal disconnections of the resistor structure are irrelev
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Finally, in superconductor-resistor networks at the perco
tion threshold of superconducting elements, disconnecti
are in fact responsible for the quantity of interest, which
the residual finite-size resistivity; one can then establish
riodic boundary conditions across the strip~in order to mini-
mize finite-width effects! and estimate the longitudinal resis
tivity @5,6#.

Here we introduce a scheme that preserves the conne
structure of the percolating cluster as one sweeps along
strip, and at the same time relies on standard ideas
random-matrix multiplication. The latter feature implies th
any physical quantity, in addition to connection probabili
can be sampled along the strip through insertion of its c
responding local realization. This opens the way, e.g., to
straightforward treatment of spin-spin correlations in dilu
magnets@7#, for which only approximate TM treatments, re
lying on plausible but essentially uncontrollable assum
tions, have been available so far@8#. In the new scheme we
enumerate the set of all allowed column combinations,
cording to the original TM procedure@1#, and then build the
strip one full column at a time, by picking a given column
successor at random butonly among those columns that ar
allowedby the connectivity rules~i.e., those that have a non
zero TM element linking them to their immediate predec
sor!. With the proper assignment of probabilistic weights,
explained below, this procedure is equivalent to the samp
of connected configurations implicit in the iteration of th
TM.

In what follows, we first expose the basic concepts of
method; then the decay of correlations is calculated
shown to reproduce the results given by diagonalization
the TM. Next we apply the method to the longitudinal co
ductivity of a diluted resistor-insulator network. For this pa
ticular process high-accuracy results exist, together w
some exact ones, which provide a test of the method. At
percolation point, the new method produces estimates of
conductivity exponent that compare very favorably w
those existing in the literature. Near the pure-network lim
we obtain the corrections to the conductivity to first order
defect concentration, which are in excellent numerical agr
R6245 © 1998 The American Physical Society
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ment with analytical results. Finally we point to possib
extensions and generalizations of the present approach.

We consider a strip of a square lattice of widthL sites,
with periodic boundary conditions across, on which si
may be independently occupied~unoccupied! with the prob-
ability p (12p). As explained in Ref.@1#, one builds all
possible column configurations in which at least one site
occupiedand linked to the origin~assumed to be at the fa
left, say!; other sites may be either occupied and connec
occupied and disconnected, or unoccupied. The TM elem
Ti j between column configurationsi and j is nonzero only if
column j is allowed to succeed columni ~this means that the
connection to the origin must be preserved, and illogical s
ations, such as an occupied and disconnected site being
ceded by a connected one on the same row, must not oc!.
One has

Ti j 5pNj~12p!L2Nj , ~1!

whereNj is the number of occupied sites inj . Our procedure
then goes as follows. Assume that the strip has been bui
to a column whose configuration isi . Call $ j ( i )%
[ j 1 , j 2 , . . . j M i

the set of allj ’s ~a total ofMi) allowed to

succeed a giveni . A segment of length

Li5 (
$ j ~ i !%

Li j 5 (
$ j ~ i !%

pNj~12p!L2Nj ~2!

represents the total~conditional! probability of having a con-
nected configuration succeeding columni . Drawing a ran-
dom number 0,e,1 from a uniform distribution, the nex
column configuration is chosen to bej i 0

such that

(
j 5 j 1

j i 021

Li j ,eLi, (
j 5 j 1

j i 0

Li j . ~3!

This ensures that the allowed connected configurations c
up with their proper corresponding probabilities. One c
then proceed and generate a column to succeedj 0, and so on,
iteratively. The only information to be kept in store throug
out the process is the same as that used in the standard
formalism: the location and indices~column occupancy num
bers! of nonzero TM elements.

We now show that for a strip of widthL, the scheme
described above gives the same correlation length,jL , as
that obtained from diagonalization of the TM. One defin
jL(p) through the exponential decay of the probability
connection between columns 0 andN, PN(p):

PN~p!;exp@2N/jL~p!#. ~4!

Since the process described here is asequential samplingone
~as opposed to the parallel updating of mutually exclud
paths in configuration space, which takes place in the ite
tion of the TM!, one must consider the appropriate quantit
to analyze. At each step, when column configurationj i 0

is

chosen amongMi to succeedi , one is probing one branch o
a tree structure in the space of column configurations,
discardingMi21 others. In order to deal with this, and pr
duce unbiased samples, the standard procedure is the we
ing of steps introduced in early simulations of self-avoidi
s
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walks@9#. When considering the allowed moves from a po
i to the next~in configuration space, as opposed to real sp
in Ref. @9#!, one generates a weightWi proportional to the
total probability of moving out from that point. In the prese
case,Wi5Li of Eq. ~2!. It is easy to see thatWi is properly
normalized, as the denominator is the sum of probabilities
all possible succeeeding configurations, not only connec
ones, and that is unity. The total weight of a givenN21-
step walk~spanningN points! is the productW1W2 . . . WN ,
to be denoted byWN . The quantity whose variation with
distance is to be studied, in the present context of seque
sampling, isWN ; on universality grounds, it is expected t
decay with the same correlation length asPN of Eq. ~4!.

For strips of widthsL54, . . . ,11 atp50.592 745, the
best numerical estimate of the appropriate percolation thre
old to our knowledge@10#, we have generated large numbe
(Nsamp) of independent connected configurations betwe
the origin and columnN0. The weights of theNsampconfigu-
rations up to respectively columnsN02D and N0

were summed to produce the estimatesW̄N02D

5((k51
NsampW N02D

(k) )/Nsamp and W̄N0
5((k51

NsampW N0

(k))/

Nsamp. An estimate of the correlation length is then given

D

j
52 lnS W̄N0

W̄N02D
D . ~5!

Finally, we have repeated the processns times with distinct
random-number sequences, in order to estimate fluctuati
We usedNsamp5105, N0520, D510, andns5100. Our re-
sults are displayed in Table I, in the form of estimates for
critical decay-of-correlations exponenth, through the iden-
tity h5L/pj(pc) given by conformal invariance@11#. These
are to be compared with those, also in Table I, obtained fr
the largest eigenvalue of the TM. The values ofN0 and D
were chosen bearing in mind that, both from general fin
size scaling ideas and from previous results for percola
@1#, it is known that the correlation length at criticality mu
be of orderL. The convergence of finite-width results to
wards the value given by conformal invariance@11#,
h5 5

24 50.208 333 . . . hasbeen investigated elsewhere@12#.
For our present purposes the relevant comparison is betw
the columns of Table I, which shows the soundness of
proposed scheme. As expected from the theory of nor
distributions, fluctuations shrink with (Nsamp)

21/2, because it

TABLE I. Estimates ofh5L/pj(pc) at p50.592 745; aver-
ages overns5100 distinct sequences, each ofNsamp5105 accumu-
lated weights.

L h ~this work! h ~TM!

4 0.212 5560.000 20 0.212 557 612 8
5 0.211 4260.000 26 0.211 467 327 6
6 0.210 6960.000 29 0.210 737 071 4
7 0.210 1660.000 39 0.210 223 288 6
8 0.209 7960.000 43 0.209 856 476 7
9 0.209 5460.000 44 0.209 586 803 3

10 0.209 3060.000 47 0.209 383 309 9
11 0.209 1560.000 55 0.209 226 163 1



o
is
e

le
o-

r
se
n

rk
rip

of
t

th

o
;
co

d
-
os

re
i

-
m

o

ip
ivity
re
ose
e
ller
me
m-

in
ing
o-

-

a

ss-

nge.
of
lity
n-

ery

tial
to

r

m-

n-

r

RAPID COMMUNICATIONS

57 R6247CONNECTIVITY-DEPENDENT PROPERTIES OF . . .
is there that the accumulation of sample weights leading
self-averaging takes place, but remains approximately c
stant withns . The amount of computational time involved
linearly proportional tons3Nsamp; thus one can produc
more accurate results by increasingNsamp while reducingns
to one; in this limit, the width of the error bar for the sing
~presumably very precise! central estimate can be extrap
lated from those obtained for largens and correspondingly
smaller Nsamp, via the (Nsamp)

21/2 dependence. Since ou
goal here is to demonstrate the feasibility of the propo
approach, rather than refining numerical values, we did
pursue this line systematically.

We now show results for finite-size conductivitysL(pc)
at the percolation threshold of a resistor-insulator netwo
From finite-size scaling, this is expected to vary with st
width as

sL~pc!;L2t/n, ~6!

where the best available estimate for the exponent
t/n50.974560.0015 @6#. We have generated samples
site-diluted resistor networks~where a bond is a resistor if i
connects two occupied sites, and an insulator otherwise!, ac-
cording to the procedure delineated above. Now, since
quantity to sample~average conductivity per bond! is natu-
rally accumulated as one proceeds along the strip~instead of
decaying exponentially, as is the case with connection pr
abilities!, one does not have to be concerned with weights
suffices to generate very long samples, and each column
figuration will come up with its good weight.

Conductivities have been calculated by Fogelholm’s no
deletion algorithm@13#. This is very efficient on a strip ge
ometry, since it depends on keeping track only of at m
L(L21)/2 links among sites, plus 2L links to the origin.

Table II shows our data forL53 – 11 where for each strip
width 100 independent samples, each of length 105 columns,
were generated. Error bars reflect deviations among diffe
samples. A least-squares fit to a log-log plot of the data
Table II givest/n51.00560.002, with an accumulatedx2

per degree of freedom~DOF!51.0, an estimate which is 3%
above the accepted value@6#, with apparently nonoverlap
ping error bars. Before accepting this at face value, so
remarks are in order.

First we perform a similar fit to the resistivity (rL) data
on the site superconductivity problem, shown in Table I
Ref. @6#. In d52 the superconducting exponents/n in rL

TABLE II. Estimates ofsL(pc) at p50.592 745; averages ove
ns5100 distinct strips, each of length 105 columns.

L sL

3 0.344 3560.000 63
4 0.259 3160.000 54
5 0.207 1860.000 53
6 0.172 4160.000 47
7 0.147 4960.000 45
8 0.128 8160.000 38
9 0.114 3160.000 42

10 0.102 7160.000 35
11 0.093 2360.000 33
to
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;L2s/n is the same ast/n, by duality~see Refs.@5,6#!. Also,
the same~periodic! boundary conditions across the str
were used, as opposed to free ones for previous conduct
studies@4#. This is important when one wishes to compa
purely finite-size effects between two sets of data. Th
authors simulated strips 104 times as long as we did, thus th
fact that their error bars are two orders of magnitude sma
than our own indicates that both methods have the sa
intrinsic accuracy. We then turn to a comparison of syste
atic errors. For thesamerange 3<L<11, the data of Ref.@6#
give t/n.0.913, though with a very largex2 per DOF that
partly reflects the greater accuracy of the individual data
Ref. @6#, as well as the need to take corrections to scal
into account. Assuming a power-law correction with exp
nentv, always for 3<L<11, fits of rLLt/n to a1b/Lv for
0.94<t/n<1.02 show thatx2 per DOF indeed has a mini
mum value att/n;0.982–0.987 whenv is kept constant at
1.2–1.4~see Ref.@6#!. The amplitudeb varies monotonically
between20.1 and20.6. A similar analysis of our own dat
shows thatx2 per DOF has a gentle maximum att/n
;0.95 and a minimum att/n;1.025. The amplitudeb starts
from 0.44 att/n50.94 and decreases monotonically, cro
ing zero att/n;1.005. Varyingv along a wider interval,
between 1 and 2.5, does not produce any significant cha

Thus, for similar strip widths and comparable amounts
computational effort, our method generates data of qua
comparable to other authors’. It seems that for critical co
ductivity studies in two dimensions one has to reach v
large widths, of order 40 sites@4–6#, before asymptotic be-
havior sets in. While this could be done in Refs.@4–6#, the
nature of the present algorithm is such that the exponen
growth, with strip width, of the number of configurations
be stored is the main obstacle to going further thanL511.
However, from past experience@8# we expect such an uppe
limit to not be as stringent, e.g., for diluted magnets.

We have also studied resistor networks for very low i
purity ~insulator! concentrations (12p), where it has been
predicted@14# that conductivity must vary as

s~p!/s~1!512p~12p!1p~12p!2/2. ~7!

By using finite-size considerations pertaining to low conce

TABLE III. Estimates ofsL(p) at p50.999; averages overns

5100 distinct strips, each of length 105 columns. Extr.: extrapola-
tion against 1/L2 ~see text!. Expected: Eq.~7!.

L sL

3 0.996 1860.000 19
4 0.996 4860.000 16
5 0.996 6160.000 13
6 0.996 6960.000 12
7 0.996 7360.000 11
8 0.996 75360.000 099
9 0.996 77560.000 099

10 0.996 79160.000 095
11 0.996 80460.000 092

Extr. 0.996 8560.000 05
Expected 0.996 86 . . .
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trations of impurities in a cylindrical geometry, we hav
shown that the finite-size conductivity is

sL~p!5s`~p!1a~p!/L21O~1/L4!, ~8!

wheres`(p) is given by Eq.~7! anda(p)52(12p)p3/6.
Our data for the normalized conductivity atp50.999@where
Eq. ~8! gives s`(p)50.99686 . . . and a(p)525.17
31023# and 3<L<11 are shown in Table III, where fo
each strip width 100 independent samples, each of length5

columns, were generated. Error bars reflect deviations am
different samples. A least-squares fit of our finite-size d
givess`50.9968560.00005, where the small error bar r
flects the fit’s overall smoothness, anda5(26.061.7)
31023, in very good agreement with the theoretical pred
tion.

We have proposed and illustrated a straightforw
scheme for diluted systems, in which a transfer-matrix
proach can be implemented without giving rise to longitu
nal disconnections along a strip. Previous treatments w
either restricted to the calculation of the decay of connec
-

, J

.

ys
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ng
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-

d
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re
n

probability @1#, or could be carried out independent of di
connections, owing to particular geometric@4# or physical
@5,6# features, or else were forced to rely on essentially
controllable assumptions on the commutation of TMs as
ciated with distinct dilution configurations@8#. Extensions of
the present work to dilute magnets@7,8# are now being con-
sidered. Further applications would be to the anomalous t
mal behavior of Fe~110! submonolayers on W~110! @15#, and
to frustrated percolation@16#, a problem related to glass
formation processes.
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