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Connectivity-dependent properties of diluted sytems in a transfer-matrix description
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We introduce an approach to connectivity-dependent properties of diluted systems, which is based on the
transfer-matrix formulation of the percolation problem. It simultaneously incorporates the connective proper-
ties reflected in nonzero matrix elements and allows one to use standard random-matrix multiplication tech-
niques. Thus it is possible to investigate physical processes on the percolation structure with the high efficiency
and precision characteristic of transfer-matrix methods, while avoiding disconnections. The method is illus-
trated for two-dimensional site percolation by calculating the finite-size longitudinal dc conductiviiy foe
critical correlation length along the strifij) at the percolation threshold, afiil ) very near the pure-system
limit. [S1063-651X98)51406-7

PACS numbgs): 05.50+q, 05.70.Jk, 64.60.Ak, 64.60.Fr

The transfer-matrix(TM) approach to percolation was Finally, in superconductor-resistor networks at the percola-
pioneered by Derrida and co-workdrk|. By analyzing the tion threshold of superconducting elements, disconnections
possible combinations of adjacent column states made up @fre in fact responsible for the quantity of interest, which is
occupied and unoccupied sitésr bonds, and the allowed the residual finite-size resistivity; one can then establish pe-
connections among the latter and to the arbitrary origin of aiodic boundary conditions across the stfip order to mini-
two-dimensional §=2) strip, it was possible to write the mize finite-width effectsand estimate the longitudinal resis-
TM on the basis of such column states. The key element ifivity [5,6].
this formulation was the fact that, from the very structure of Here we introduce a scheme that preserves the connected
the TM, repeated multiplication is tantamount to the simul-structure of the percolating cluster as one sweeps along the
taneous generation of all possible connected configurationstrip, and at the same time relies on standard ideas of
that span the strip, each with its proper probabilistic weightrandom-matrix multiplication. The latter feature implies that
Thus the probability of connection to the origin, whose ex-any physical quantity, in addition to connection probability,
ponential decay is governed by the correlation length, isan be sampled along the strip through insertion of its cor-
asymptotically given exactly by the largest eigenvalue of theesponding local realization. This opens the way, e.g., to the
TM. The correlation length could then be used in a phenomstraightforward treatment of spin-spin correlations in dilute
enological renormalization calculatig@], which gave very magnetg7], for which only approximate TM treatments, re-
accurate results for critical parameters such as the percoldying on plausible but essentially uncontrollable assump-
tion threshold and correlation-length exponentt was not  tions, have been available so f&]. In the new scheme we
clear, however, how one could take advantage of such a denumerate the set of all allowed column combinations, ac-
rect and elegant scheme to investigate properties other thawrding to the original TM procedutd], and then build the
the decay of the probability of connection to the origin. Thestrip one full column at a time, by picking a given column’s
obvious alternative, of building up successive columns bysuccessor at random bahly among those columns that are
occupying(or noY each individual site independently, runs allowedby the connectivity rule§.e., those that have a non-
into the problem of disconnections, which is severely aggrazero TM element linking them to their immediate predeces-
vated on a strip geometry. Until now, the usual solution hassor). With the proper assignment of probabilistic weights, as
been to generate configurations site by site, and study quaexplained below, this procedure is equivalent to the sampling
tities that do not depend on keeping connectivity along theof connected configurations implicit in the iteration of the
strip, e.g., the moments of the distribution of clus@kfor  TM.
percolation ind=2 and 3. A clever way to get around the  In what follows, we first expose the basic concepts of the
effects of disconnections for random resistor-insulator netmethod; then the decay of correlations is calculated and
works at percolation was introducéd] by generating indi- shown to reproduce the results given by diagonalization of
vidual elements on long strip®r bars, ind=3) with free  the TM. Next we apply the method to the longitudinal con-
edges. By imposing a fixed voltage draprossthe strip, it ductivity of a diluted resistor-insulator network. For this par-
was possible to invoke TM concepts with a step-by-stegticular process high-accuracy results exist, together with
evaluation of the transverse conductivity, for which longitu- some exact ones, which provide a test of the method. At the
dinal disconnections of the resistor structure are irrelevantpercolation point, the new method produces estimates of the

conductivity exponent that compare very favorably with

those existing in the literature. Near the pure-network limit
*Electronic address: sldq@if.uff.br we obtain the corrections to the conductivity to first order in
TElectronic address: stinch@thphys.ox.ac.uk defect concentration, which are in excellent numerical agree-
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ment with analytical results. Finally we point to possible TABLE I. Estimates ofp=L/mw§(p;) at p=0.592 745; aver-

extensions and generalizations of the present approach. —ages ovens=100 distinct sequences, eachNy, = 10" accumu-
We consider a strip of a square lattice of widthsites,  lated weights.

with periodic boundary conditions across, on which sites

may be independently occupiédnoccupied with the prob- L 7 (this work) 7 (TM)
ability p (1—p). As explained in Ref[1], one builds all 4 0.212 55-0.000 20 0.212 557 612 8
possible column configurations in which at least one site is 5 0.211 42+ 0.000 26 0211 467 327 6
loitcup|e(.ja|;|rc]i I|nk_?d to thebong_ltrtn](assumeq t(;) bedat the fatr . 6 0.210 6% 0.000 29 0210737 071 4
occupied and disconnecied, of tnoccupied. The T elemen; /021016000039 0210223288
T;; bStween column confi u’ratiomsand j F;s n(.)nzero only if 8 0.209 780.000 43 0209856 476 7
cglumnj is allowed to suc?:eed colurriréthis means thatythe o 0.209 54-0.000 44 0209 586 803 3
connection to the origin must be preserved, and illogical situ- 10 0.209 36-0.000 47 0.209 383 3099
11 0.209 15-0.000 55 0.209 226 163 1

ations, such as an occupied and disconnected site being pre-
ceded by a connected one on the same row, must not)occur
One has

walks[9]. When considering the allowed moves from a point
T= pNi(1—p)t M, (1) | to the next(in configuration space, as opposgd to real space

in Ref.[9]), one generates a weighlt; proportional to the
whereN; is the number of occupied sitesjinOur procedure  total probability of moving out from that point. In the present

then goes as follows. Assume that the strip has been built upase,W;=L; of Eq. (2). It is easy to see thaw, is properly
to a column whose configuration is. Call {j(i)} normalized, as the denominator is the sum of probabilities of

=j1.j2, ...jm the set of allj’s (a total of M;) allowed to all possible succeeeding configurations, not only connected
: ones, and that is unity. The total weight of a givier-1-
step walk(spanningN points is the producW;W, . . . Wy,
to be denoted byV,. The quantity whose variation with
Li=> Lj=2> pNa-p-N (2)  distance is to be studied, in the present context of sequential
oy o} sampling, isWy; on universality grounds, it is expected to
represents the totétonditiona) probability of having a con- ~decay with the same correlation lengthRg of Eq. (4).

succeed a given A segment of length

nected configuration succeeding colurinnDrawing a ran- For strips of widthsL=4,...,11 atp=0.592 745, the
dom number & e<1 from a uniform distribution, the next best numerical estimate of the appropriate percolation thresh-
column configuration is chosen to ﬁ)% such that old to our knowledg¢10], we have generated large numbers
(Nsamp of independent connected configurations between
Jig-1 iy the origin and colummM,. The weights of thé&Ng,,,configu-
2 Ljj<eL;< 2 Lij . 3) rations up to respectively columndNyg—A and Ng
=0 =l were summed to produce the estimateB/y 4

This ensures that the allowed connected configurations conre (= =3"W (ng_A)/Nsamp and  Wy,= (S (ng)/

up with their proper corresponding probabilities. One camNg,,,,. An estimate of the correlation length is then given by
then proceed and generate a column to sucggezhd so on,

iteratively. The only information to be kept in store through- A y_vN
out the process is the same as that used in the standard TM —=—In| = (5)
formalism: the location and indicésolumn occupancy num- § Whi,-a

berg of nonzero TM elements.

We now show that for a strip of width, the scheme Finally, we have repeated the processtimes with distinct
described above gives the same correlation length,as  random-number sequences, in order to estimate fluctuations.
that obtained from diagonalization of the TM. One definesWe useNgam = 10°, No=20, A= 10, andns=100. Our re-
£.(p) through the exponential decay of the probability of sults are displayed in Table I, in the form of estimates for the

connection between columns 0 aNg Py(p): critical decay-of-correlations exponemt through the iden-
tity n=L/w&(p.) given by conformal invariandel1]. These
Pn(p)~exd =N/ (p)]- (4) are to be compared with those, also in Table |, obtained from

the largest eigenvalue of the TM. The valuesNyf and A
Since the process described here sequential samplingne  \ere chosen bearing in mind that, both from general finite-
(as opposed to the parallel updating of mutually excludingijze scaling ideas and from previous results for percolation
paths in configuration space, which takes place in the iterg], it is known that the correlation length at criticality must
tion of the TM), one must consider the appropriate quantitiespe of orderL. The convergence of finite-width results to-
to analyze. At each step, when column configuraipnis  wards the value given by conformal invarianddi],
chosen amoni; to succeed, one is probing one branch of 7=2=0.208 33 ... hasbeen investigated elsewhdrt2].
a tree structure in the space of column configurations, an&or our present purposes the relevant comparison is between
discardingM;— 1 others. In order to deal with this, and pro- the columns of Table I, which shows the soundness of the
duce unbiased samples, the standard procedure is the weigptroposed scheme. As expected from the theory of normal
ing of steps introduced in early simulations of self-avoidingdistributions, fluctuations shrink witH\(.;amF)‘”% because it
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TABLE Il. Estimates ofo (p.) atp=0.592 745; averages over TABLE lll. Estimates ofo (p) at p=0.999; averages overg
ny=100 distinct strips, each of length 3l6olumns. =100 distinct strips, each of length 3L8olumns. Extr.: extrapola-
tion against 1/? (see text Expected: Eq(7).

L oL
L oL
3 0.344 35-0.000 63
4 0.259 31 0.000 54 3 0.996 18-0.000 19
5 0.207 18-0.000 53 4 0.996 48-0.000 16
6 0.172 41 0.000 47 5 0.996 61 0.000 13
7 0.147 49-0.000 45 6 0.996 69-0.000 12
8 0.128 81 0.000 38 7 0.996 73-0.000 11
9 0.114 31 0.000 42 8 0.996 753 0.000 099
10 0.102 73 0.000 35 9 0.996 775-0.000 099
11 0.093 23 0.000 33 10 0.996 791 0.000 095
11 0.996 804 0.000 092
Extr. 0.996 85-0.000 05
is there that the accumulation of sample weights leading to Expected 0.996@. . .

self-averaging takes place, but remains approximately con
stant withng. The amount of computational time involved is

linearly proportional tonsX Nsamp; thus one can produce ~| =97 s the same a v, by duality(see Refs[5,6]). Also,
more accurate results by increasiNg,,,while reducingns  the same(periodid boundary conditions across the strip
to one; in this limit, the width of the error bar for the single were used, as opposed to free ones for previous Conductivity
(presumably very precigecentral estimate can be extrapo- studies[4]. This is important when one wishes to compare
lated from those obtained for large and correspondingly purely finite-size effects between two sets of data. Those
smallerNg,mp, Via the Ngamp M2 dependence. Since our authors simulated strips 41@imes as long as we did, thus the
goal here is to demonstrate the feasibility of the proposedact that their error bars are two orders of magnitude smaller
approach, rather than refining numerical values, we did nofhan our own indicates that both methods have the same
pursue this line systematically. intrinsic accuracy. We then turn to a comparison of system-
We now show results for finite-size conductivity (Pc)  atic errors. For theamerange 3<L <11, the data of Ref6]
at the percolation threshold of a resistor-insulator networkgive t/»=0.913, though with a very large? per DOF that
From finite-size scaling, this is expected to vary with strippartly reflects the greater accuracy of the individual data in
width as Ref. [6], as well as the need to take corrections to scaling
by into account. Assuming a power-law correction with expo-
oL (Pe)~ L (6) nentw, always for 3<L <11, fits of p, LY” to a+b/L® for

where the best available estimate for the exponent i9.94st/vs1.02 show thaly” per DOF indeed has a mini-

t/v=0.9745-0.0015[6]. We have generated samples of MUM value at/v~0.982—0.98? whew IS kept constant at
site-diluted resistor network@svhere a bond is a resistor if it 1.2-1.4(see Ref6]). The a”.‘P!'t“deb varies monotonically
connects two occupied sites, and an insulator othejwése between— 0.12and—0.6. A similar analysis of our own data
cording to the procedure delineated above. Now, since thghOWS thaty per DOF has a gentle maximurm oty
quantity to sampleaverage conductivity per bopds natu- ~0.95 and a minimum &t »~1.025. The amphtu'db starts
rally accumulated as one proceeds along the éimistead of from 0.44 att/v=0.94 and d_ecreases monot_onlcglly, Cross-
decaying exponentially, as is the case with connection prognd 2ero att/»~1.005. Varyinge along a wider interval,
abilities), one does not have to be concerned with weights; iP€Ween 1 and 2.5, does not produce any significant change.
suffices to generate very long samples, and each column con- 1 1S, for similar strip widths and comparable amounts of
figuration will come up with its good weight. computational effort, our me,thod generates data_(_)f quality

Conductivities have been calculated by Fogelholm’s nog&omparable to other authors’. It seems that for critical con-
deletion algorithm{13]. This is very efficient on a strip ge- ductmty studies in two dlmensmns one has to ree_lch very
ometry, since it depends on keeping track only of at mosk"‘rg_e widths, of order 40 sitggl—€], before asymptotic be-
L(L_l)/z links among sites, plUSLGnkS to the Origin. avior sets in. While this C(.:)Uld t.)e done in Rdj@—ﬁ], the '

Table Il shows our data fdr=3—11 where for each strip Nature of the present algorithm is such that the exponential
width 100 independent samples, each of lengthcdumns, growth, WI'Fh strip Wlplth, of the numbgr of configurations to
were generated. Error bars reflect deviations among differelﬁe stored is the main obs.tacle to going further thanll.
samples. A least-squares fit to a log-log plot of the data ir]. owever, from past _experlentﬁe] we expect such an upper
Table Il givest/»=1.005+0.002, with an accumulateg? imit to not be as stringent, e.g., for diluted magnets. _
per degree of freedofDOF)=1.0, an estimate which is 3% We have also studied regstor networks for_ very low im-
above the accepted valiié], with apparently nonoverlap- purlty (insulatoy concentratlpns (£ p), where it has been
ping error bars. Before accepting this at face value, som@redicted(14] that conductivity must vary as
remarks are in order.

First we perform a similar fit to the resistivity() data o(p)o(1)=1-m(1-p)+m(1-p)%2. (7)
on the site superconductivity problem, shown in Table | of
Ref. [6]. In d=2 the superconducting exponesity in p, By using finite-size considerations pertaining to low concen-
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trations of impurities in a cylindrical geometry, we have probability [1], or could be carried out independent of dis-
shown that the finite-size conductivity is connections, owing to particular geometfi¢] or physical
[5,6] features, or else were forced to rely on essentially un-
controllable assumptions on the commutation of TMs asso-
ciated with distinct dilution configuratiori8]. Extensions of

the present work to dilute magndt,8] are now being con-
sidered. Further applications would be to the anomalous ther-

oL(p)=0o.(p)+a(p)/L?+O(1L?), (8)

whereo.(p) is given by Eq.(7) anda(p)=—(1—p) /6.
Our data for the normalized conductivity @t 0.999[where

Eq. (8 gives 0.(p)=0.996&... and a(p)=—-5.17 mal behavior of FE&L10) submonolayers on 10 [15], and

x10"°] and 3<L<11 are shown in Table Iil, where for o frustrated percolatiofil6], a problem related to glass-
each strip width 100 independent samples, each of length 1 . b ranp 9
grmation processes.

columns, were generated. Error bars reflect deviations among
different samples. A least-squares fit of our finite-size data S.L.A.dQ. thanks the Department of Theoretical Physics
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tion. e Tecnolgico (CNPg and the Royal Society, which funded
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